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Holey matrimony: marrying two approaches to a
tiling problem
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Abstract. Consider an hexagonal region on the triangular lattice, the interior of which
contains a number of holes. This extended abstract outlines a recent result by the
author that marries together two separate approaches to counting tilings in order to
express the number of rhombus tilings of a holey hexagon (subject to very mild re-
strictions) as a determinant whose size is dependent only on the regions that have
been removed. The main result follows from explicitly deriving the (i, j)-entries of the
inverse Kasteleyn matrix corresponding to certain sub-graphs of the hexagonal lattice.
This generalises a number of known results and may well lead to a proof of Ciucu’s
electrostatic conjecture for the most general family of holes to date.
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1 Introduction

Let T denote the triangular lattice consisting of unit equilateral triangles, drawn so that
one of the families of lattice lines is vertical. Suppose Ha,b,c is the hexagonal sub-region
of T that has sides of length a, b, c, a, b, c (going clock-wise from the south-west side),
centred at some origin2 O. By joining together two unit triangles on T that share exactly
one edge we obtain a unit rhombus, thus a rhombus tiling of Ha,b,c (from now on referred
to as simply a tiling) arises from joining together in this way all pairs of unit triangles
contained in Ha,b,c (see Figure 1).

Tilings of hexagons first arose in the literature in 1916 (albeit in a different form),
when MacMahon [15] showed that the number of plane partitions3 that fit inside an a×
b× c box4 is given by

∗Research supported by the Austrian Science Foundation (FWF), grant F50-N15, in the framework of
the Special Research Program “Algorithmic and Enumerative Combinatorics”.

2The origin is the intersection of the two lines that intersect the midpoints of two pairs of parallel
sides of Ha,b,c. Each family of lattice lines comprising T may be labelled with respect to O, thus each unit
triangle of T is given by a triple consisting of the labels of the lattice lines that comprise its edges.

3A plane partition is a left justified array of positive integers where the row lengths weakly decrease
from top to bottom, and the entries are weakly decreasing along rows and down columns.

4A plane partition fits inside an a× b× c box if its row length is at most a, its entries are at most b,
and its column length is at most c.
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Figure 1: From left to right: a plane partition; its three dimensional representation
as a pile of unit cubes stacked in the corner of a 3× 4× 5 box; its two dimensional
representation as a tiling of H3,4,5; the hexagonal sub-region of T , H3,4,5.

PP(a, b, c) :=
a

∏
i=1

b

∏
j=1

c

∏
k=1

i + j + k− 1
i + j + k− 2

. (1.1)

Although these objects may at first sight seem completely unrelated to tilings, the bi-
jection that exists between a× b× c boxed plane partitions and tilings of Ha,b,c is perhaps
one of the most beautiful relationships in combinatorics (see Figure 1). In the 100 years
since their introduction these objects have garnered a great deal of attention and thus
the mathematics surrounding them is rich and varied (for an overview of the history of
tilings see [12] and many of the references therein).

More recent results in this area have centred on tilings of hexagons that contain
defects or punctures within their interior (these are obtained by removing a set T of unit
triangles from the interior of Ha,b,c– such holey hexagons shall be denoted Ha,b,c \ T)5. Of
course once we begin to remove regions from the interior of Ha,b,c the three dimensional
interpretation of tilings as piles of unit cubes breaks down and we end up with tilings
that are reminiscent of the works of Escher (see Figure 3). Enumerating these types of
tilings is generally more complicated, nonetheless in recent years a number of formulas
have arisen for different classes of holes (see Figure 2 for a small selection of examples
of different types of holey hexagons considered so far in the literature).

It is perhaps worth briefly discussing the motivation behind this sort of enumeration.
Not only do such problems present a considerable counting challenge, but when con-
sidered on a large scale they appear to have an interpretation that comes directly from
physics (more specifically, electrostatics). Indeed it has been conjectured by Ciucu [1]
that the interaction between holes that are a large distance apart within a sea of dimers
(that is, tilings of the plane that contain a set of holes) is governed by a Coulomb-like

5The set T is a union of unconnected regions that are each comprised of connected unit triangles, that is,
T := ∪iTi where Ti is either a single unit triangle or a set of unit triangles in which every t ∈ Ti intersects
with at least one other t′ ∈ Ti, t′ 6= t either at an edge (forming a rhombus) or a corner (forming a little
unit bow-tie), and for any pair of triangles t ∈ Ti, t′ ∈ Tj, i 6= j, t and t′ are not connected. Note that any
two unit triangles that share an edge with the outer boundary are also deemed to be connected.
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Figure 2: Examples of the types of holey hexagons considered by Ciucu and Fischer
in [4], [5], and the author [8] (from left to right).

law6, while in [8] the author showed how a well-known physical principle known as the
method of images emerges from the asymptotic analysis of formulas that count vertically
symmetric tilings of certain holey hexagons.

Although Ciucu’s conjecture remains wide open, it is the belief of the author that
the main result of this paper (Theorem 1, presented below) could lead to a proof for the
most general class of holes to date.

Theorem 1. Suppose T = {l1, . . . , lk, r1, . . . , rk} is a set of (left, lj, and right, ri, pointing) unit
triangles that comprise a union of unconnected regions contained in the interior of Ha,b,c, where
each region has an even charge7 and the sum of the charges is zero. The number of tilings of
Ha,b,c \ T is given by

M(Ha,b,c \ T) = PP(a, b, c) · |det((P(a, b, c, lj, ri))1≤i,j≤k)|,

where8

P(a, b, c, lj, ri) :=

[(
x(lj) + y(lj)− x(ri)− y(ri)

x(lj)− x(ri)

)
−

a−1

∑
t=0

(((
c + t

t

)(
(b + c) + t

b

))−1

·
t

∑
u=0

(−1)u
( (b+c)

2 − x(ri)− y(ri)
(a+c)

2 − x(ri)− u− 1
2

)(
c + t− u− 1

c− 1

)(
b + u

u

)

·
t

∑
v=0

(−1)v
( (b+c)

2 + x(lj) + y(lj)
(a+b)

2 + y(lj)− v− 1
2

)(
b + t− v− 1

b− 1

)(
c + v

v

) ,

and (x(lj), y(lj)), (x(ri), y(ri)) are co-ordinates in (1
2Z)2 determined by lj and ri respectively.9

6Coulomb’s law states that the force of attraction between two point charges in an electromagnetic
field is inversely proportional to the distance between them.

7The charge is the difference between the right and left pointing unit triangles that comprise a region.
8Here the binomial function (n

k) is defined as n!/(k!(n− k)!) for 0 ≤ k ≤ n, and 0 otherwise.
9See Remark 4 in Section 3.
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Remark 1. The condition on T is very general indeed, hence Theorem 1 has a wide range
of potential applications. For example T may be the union of a set of unit rhombi,
in which case the formula above gives the number of tilings of Ha,b,c that contain a
specified configuration of unit rhombi. Similarly if T is a set of unit triangles on the
outer boundary of Ha,b,c then Theorem 1 specialises to the generalised version of Kuo
condensation for Ha,b,c that may be found in [3].

The proof of the above theorem (see [9]) involves merging two separate approaches to
tiling enumeration. On one side we have a method due to Kasteleyn [10, 11] (outlined in
Section 2) that considers tilings in their equivalent form as perfect matchings (sometimes
referred to as dimer coverings) of sub-graphs of the hexagonal lattice H . On the other we
have the classic translation of tilings to non-intersecting lattice paths for which there exists
a well-known and celebrated determinant formula due to Lindström [14], and Gessel
and Viennot [7] (discussed in Section 3). In Section 4, with the help of further results
due to Cook and Nagel [6] we marry together these inherently different approaches to
determine the entries of the inverse Kasteleyn matrix corresponding to Ha,b,c, from which
Theorem 1 follows. We conclude in Section 5 with a brief discussion of how Theorem 1
could potentially lead to a proof of Ciucu’s electrostatic conjecture [1].

2 Kasteleyn’s method

Let us begin by considering the finite bipartite planar graph G (embedded on a sphere)
consisting of 2n black and white vertices labelled b1, b2, . . . , bn and w1, w2, . . . , wn respec-
tively, where we have attached real-valued weights to the edges of G. A matching of G is
a subset of edges that are non-adjacent (that is, no two edges contain a common vertex)
and a perfect matching (often referred to as a dimer covering) of G is a matching in which
every vertex of G is incident to precisely one edge.

Given such a graph it is possible to form the weighted bi-adjacency matrix correspond-
ing to G (denoted AG), where AG = (w(bi, wj))1≤i,j≤n is the n × n matrix with entries
given by the sum of the weights of the edges between vertices bi and wj. If the weight
of a dimer covering is defined to be the product of the weights of the edges it consists of
then the weighted count of dimer coverings of G is given by

∑
σ∈Sn

n

∏
i=1

w(bi, wσ(i)), (2.1)

(here Sn denotes the symmetric group on n letters). The expression above is more
succinctly described as the permanent of AG, denoted perm(AG).

If our goal is to count dimer coverings of G one may be forgiven for thinking that
this particular method could prove ineffective– the permanent is, after all, a somewhat
enigmatic function about which little is well understood. A great deal more is known
about the determinant– the much loved distant relative of (2.1), which is far easier to
compute and has a comparative abundance of useful properties.
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2.1 Determining the permanent

How, then, may we relate the permanent of a matrix to its determinant? As far as the
author is aware there exists no general method that allows us to express one in terms of
the other, however Kasteleyn [10, 11] showed that in certain situations the permanent of
a matrix is equal to its determinant (up to sign).

First let us orient the surface of the sphere on which G is embedded by endowing it
with a sense of rotation in the clock-wise direction. Suppose we orient G by directing
each edge from a black vertex to a white one. Kasteleyn showed that it is possible to
change the direction of a (possibly empty) set of edges so that in each oriented face
of G, an odd number of edges agree with the orientation of the surface of the sphere
(when the edges are viewed from the interior of each face). Such an orientation of G
is called admissible and we encode it within the weighting by multiplying by −1 the
weights of those edges that are directed from white to black. A weighting that encodes
an admissible orientation is referred to as f lat by Kuperberg [13] and we denote the
flat-weighted graph obtained from G by G±. If AG± is the weighted bi-adjacency matrix
corresponding to G± (often referred to as the Kasteleyn matrix of G±) then Kasteleyn
showed that

perm(AG±) = ±det(AG±). (2.2)

The method described above may be applied to any planar bipartite graph G (even
more generally, the approach outlined in [10, 11] is applicable to any planar graph em-
bedded on the sphere). In particular, suppose V is a subset of vertices of G± in which
the black and white vertices are equinumerous, and let G± \V denote the weighted sub-
graph obtained by removing from G± the vertices contained in V (together with all edges
incident to them). The (signed) weights of the edges that remain in G± \V are inherited
from G±, thus the bi-adjacency matrix corresponding to G± \ V (denoted AG±\V) is the
sub-matrix obtained from AG± by deleting the rows and columns that are indexed by the
vertices in V. If the inherited weighting of G± \V is flat then it follows that |det(AG±\V)|
gives the (weighted) count of the number of (weighted) dimer coverings of G± \V, thus
a set of vertices for which this holds shall be deemed flatness-preserving. If, on the other
hand, the inherited weighting of G± \ V is not flat then |det(AG±\V)| gives instead the
(weighted) count of the number of signed perfect matchings of G± \V (in the nomenclature
of [6]).

2.2 Kasteleyn’s method applied to regions that contain holes

Returning now to the hexagon Ha,b,c defined in Section 1, let Ga,b,c denote the hexagonal
sub-graph obtained from Ha,b,c by considering its dual10 (see Figure 3). Clearly Ga,b,c

10The graph Ga,b,c is obtained by replacing left and right pointing unit triangles in Ha,b,c with white and
black vertices (respectively), where edges between vertices in Ga,b,c correspond to edges between adjacent
unit triangles in Ha,b,c
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Figure 3: A tiling containing holes all of charge 2 (left) and its dual representation
(right), where the flatness-preserving vertices are coloured red and the perfect match-
ing is the set of solid lines.

is a sub-region of H (the hexagonal lattice) that consists of a collection of hexagonal
faces glued together. If we attach weights of 1 to each edge then the number of dimer
coverings of Ga,b,c, denoted M(Ga,b,c), is given by perm(AG) (where AG is the (ab + bc +
ca)× (ab + bc + ca) bi-adjacency matrix corresponding to Ga,b,c).

Suppose the plane that contains the hexagonal lattice is endowed with a clock-wise
rotation, and let us direct the edges of Ga,b,c from black vertices to white (as in the
previous section). It should be clear that in each oriented hexagonal face of Ga,b,c the
number of directed edges that are oriented clock-wise is odd (when the edges are viewed
from the interior of each face). A straightforward argument shows that same is true
for the outer boundary of Ga,b,c (this is also a face), thus the orientation of Ga,b,c is
already admissible and it follows that M(Ga,b,c) = |det(AG)|. Moreover, if Ga,b,c \ V
denotes the sub-graph obtained by removing from Ga,b,c a set of flatness-preserving
vertices V = {b1, . . . , bk, w1, . . . , wk}, then it follows that

M(Ga,b,c \V) = |det(AG\V)|. (2.3)

Remark 2. The set of vertices V is a union of unconnected subsets of vertices where in each
subset the vertices are connected via faces, that is, V := ∪iVi where either Vi consists of a
single vertex, or for every v ∈ Vi there exists at least one other vertex v′ ∈ Vi, v 6= v′ that
belongs to the same face as v, and no two vertices v ∈ Vi, v′ ∈ Vj are connected for i 6= j.
It follows that V is flatness-preserving if and only if the number of black vertices in each
set Vi is of the same parity as the number of white ones (see Figure 3, right).

So far we have established a method by which we may compute the number of dimer
coverings of the holey hexagonal sub-graph Ga,b,c \ V as the determinant of a matrix
whose size is dependent on the number of vertices that are contained within the graph.
Straightforward linear algebra, however, affords us an alternative way of evaluating the
right hand side of (2.3) as a determinant of a matrix the size of which is dependent on
the number of vertices that have been removed, instead of those that comprise Ga,b,c \V.
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If (A−1
G )V denotes the sub-matrix obtained by restricting the inverse of AG to the

columns indexed by {b1, . . . , bk} ⊂ V and rows indexed by {w1, . . . , wk} ⊂ V, then

|det(AG\V)| = |det(AG) · det((A−1
G )V)| (2.4)

(it should be noted that the above formula does not depend on whether V is a flatness-
preserving set of vertices). The determinant |det(AG)| is the number of dimer coverings
of Ga,b,c (equivalently, tilings of Ha,b,c), given by MacMahon [15] and discussed in Sec-
tion 1. It therefore follows that

M(Ga,b,c \V) = PP(a, b, c) · |det((A−1
G )V)|, (2.5)

and what remains is to determine the individual entries of the inverse Kasteleyn matrix
A−1

G .
The (i, j)-entry of A−1

G is

(−1)i+j · det(AG\Vj,i
)(det(AG))

−1,

where AG\Vj,i
is the sub-matrix obtained by deleting row j and column i from AG. If the

pair of vertices Vj,i = {bj, wi} are flatness-preserving then the determinant of AG\Vj,i
is

simply ± the number of dimer coverings of the graph Ga,b,c \Vj,i, otherwise it gives ± the
number of signed perfect matchings of Ga,b,c \Vj,i. Such matchings may be interpreted as
dimer coverings of Ga,b,c \Vj,i where the edges around the hole(s) created by the removal
of the vertices bj, wi have a certain weighting that does not correspond to an admissible
orientation.

If we stay within H , considering dimer coverings of Ga,b,c \V, then the way forward
appears somewhat murky; the (i, j)-entries of (A−1

G )V may be interpreted as (signed)
perfect matchings in which the edge weights are locally dependent on the vertices bj and
wi that have been removed. We shall see in the next section, however, that by switching
our perspective from H back to T , this sensitive local dependence of edge weights in
signed perfect matchings is captured globally by applying the theorem of Lindström [14],
and Gessel and Viennot [7] to count certain families of non-intersecting lattice paths.

3 Non-intersecting lattice paths

We now return to T , thus if Ga,b,c \V is a hexagonal sub-graph of H where V = {b, w}
then we consider its dual, the hexagonal sub-region Ha,b,c \ T of T , where T = {l, r} is a
pair of unit triangles (one left pointing, l, one right pointing, r) corresponding to w and
b in Ga,b,c (respectively). Within this setting, if V is a flatness-preserving set of vertices
then l and r are connected.

Remark 3. More generally, if V := ∪iVi is a union of unconnected sets of connected
vertices on H then each Vi corresponds to a set Ti of connected unit triangles that
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Figure 4: Two tilings of a holey hexagon (left and centre right) that are represented by
families of non-intersecting lattice paths that arise from distinct permutations mapping
start points to end points.

comprise a region on T , and the Ti’s are unconnected. It follows from the observation
in Remark 2 that if V is flatness-preserving then the charge of each Ti ∈ T must be
even. Throughout this section, however, we shall assume that T is simply a pair of unit
triangles and V a pair of vertices.

3.1 A classical bijection

A bijection exists within the folklore of plane partitions and tilings that allows one to
represent tilings of Ha,b,c \ T as families of non-intersecting paths consisting of unit
north and east steps on the half-integer lattice11. Given a tiling of Ha,b,c \ T, place a
set of a-many start (end, respectively) points so that each point lies in the middle of the
south-west (north-east) edge of the unit rhombi that lie along the south-west (north-east)
boundary of Ha,b,c \ T. Place one further start (end, respectively) point at the mid-point
of the north-east (south-west) edge of the right (left) pointing unit triangle r (l). Denote
by ST and ET these sets of (a + 1) start and end points (respectively) that lie on the
edges of the hexagon and any holes in its interior.

Beginning at a point in ST we may construct a path across unit rhombi by travelling
from the mid-point of one side of each unit rhombus to the mid-point of its opposite
parallel side. If we apply this process to every point in ST we obtain a family of paths
across unit rhombi that end at the set of points ET , where no two paths traverse the same
unit rhombus (see Figure 4).

We may easily translate this set of paths into a family of non-intersecting lattice paths
consisting of north and east unit steps that begin at the tuple of points S := (s1, . . . , sa+1),
where si := ( a−c+1

2 − i, i− a+b+1
2 ) for i ∈ {1, . . . , a} and sa+1 := (x(r), y(r)), and end at

the tuple of points E := (e1, . . . , ea+1), where ej := ( a+c+1
2 − j, j+ b−a−1

2 ) for j ∈ {1, . . . , a}
11A family of lattice paths P is non-intersecting if no two distinct paths in P meet at a lattice point.
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and ea+1 := (x(l), y(l)) (see Figure 4, right and centre-left). Note that the first co-ordinate
of each point is an integer if a and c differ in parity, and a half integer otherwise. A
similar condition holds for the second co-ordinate.

Remark 4. The start and end points sa+1 and ea+1 are given by the co-ordinate positions
of the triangles l and r when tilings of Ha,b,c \ {l, r} are translated into families of non-
intersecting lattice paths. Throughout this article we will associate with the triangles l
and r two pairs of co-ordinates (x(l), y(l)), (x(r), y(r)) respectively, where x and y are
functions that map unit triangles to half integers, so (x(∗), y(∗)) ∈ (1

2Z)2. The precise
way in which these co-ordinates are obtained is described in [9, Section 3].

3.2 Not exactly enumerating families of non-intersecting lattice paths

Translating tilings into families of non-intersecting paths is often extremely beneficial
since there is a theorem due to Lindström [14], and Gessel and Viennot [7] that allows
one to express a sum of signed numbers of families non-intersecting paths as a certain
determinant.

For a permutation σ ∈ Sa+1 mapping the set of start points S to the set of end
points Eσ := (eσ(1), eσ(2), . . . , eσ(a+1)), let N(S, Eσ) denote the number of families of non-
intersecting paths that arise from this mapping. The number of signed families of lattice
paths from S to E (equivalently, signed lozenge tilings of Ha,b,c \ T) is given by∣∣∣∣∣ ∑

σ∈Sa+1

sgn(σ)N(S, Eσ)

∣∣∣∣∣ . (3.1)

According to [7, 14] the expression above may be written as a determinant, that is,

∑
σ∈Sa+1

sgn(σ)N(S, Eσ) = ±det(PH\T), (3.2)

where PH\T := (P(si → ej))1≤i,j≤a+1 is the lattice path matrix with (i, j)-entry given by
the number of paths from the start point si ∈ S to the end point ej ∈ E.

Proposition 1. The number of signed tilings of Ha.b.c \ T is given by |det(PH\T)|, where
PH\T = (Pi,j)1≤i,j≤a+1 has entries given by

Pi,j =



( b+c
c+i−j) 1 ≤ i, j ≤ a,

( x(l)+y(l)+b/2+c/2
x(l)+i−a/2+c/2−1/2) 1 ≤ i ≤ a, j = a + 1,

( b/2+c/2−x(r)−y(r)
a/2+c/2+1/2−j−x(r)) i = a + 1, 1 ≤ j ≤ a,

(x(l)+y(l)−x(r)−y(r)
x(l)−x(r) ) i = j = a + 1.

When faced with such a determinant there are a host of useful tools and tricks one
may employ in order to try to establish its evaluation explicitly (the approach used
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in [9] is similar to that of [8]). By guessing the entries of the LU-decomposition of
PH\T with software such as Rate12 and using your favourite computer implementation
of Zeilberger’s algorithm (see [16], for example) to verify the decomposition is correct, it
is possible to deduce the following theorem.

Theorem 2. The determinant of PH\T is equal to PP(a, b, c) · P(a, b, c, l, r).

4 The holey union

We now describe how to relate the determinant of PH\T with that of AG\V . We do this
by examining more closely the terms in the expressions that count signed lozenge tilings
of Ha,b,c \ T and signed perfect matchings of Ga,b,c \ V. Suppose V = {b, w} is a set of
any two vertices in the interior of Ga,b,c. As discussed in Section 2, the number of signed
perfect matchings of Ga,b,c \V is given (up to sign) by

∑
π∈Sab+bc+ca−1

sgn(π)
ab+bc+ca−1

∏
i=1

(AG\V)i,π(i), (4.1)

thus if we were to expand out the above sum we could partition the matchings of
Ga,b,c \V into those that contribute positively to the sum, M+, and those that contribute
negatively, M−.

Similarly if T = {l, r} is the pair of unit triangles on T corresponding to the vertices
V on H , then in the same way we could also re-arrange (3.1) and thus partition rhom-
bus tilings of Ha,b,c \ T into those that contribute positively to (3.1), P+, and those that
contribute negatively, P−.

In 2015 Cook and Nagel [6] showed that for regions that are more general13 than the
hexagons considered here, the tilings that are contained in P+ are precisely the rhombus
tiling representations of either those matchings in M+, or the ones in M−, thus

det(AG\V) = ±det(PH\T).

Note that in expressing the signed lozenge tilings as a determinant we have fixed
a labelling of the start and end points for all holey hexagons. Thus if we suppose
the vertices of Ga,b,c also have a fixed labelling then for any two pairs of vertices this
discrepancy will be consistent14 for all pairs of vertices in Ga,b,c. Combining this fact
with Theorem 2 gives rise to the following corollary.

12A guessing machine created by C. Krattenthaler, available at http://www.mat.univie.ac.at/
~kratt/rate/rate.html.

13In [6] they consider large triangular regions of T , but these may be specialised to the hexagons with
which we are concerned by cutting off their corners.

14That is, if V, V′ are two distinct pairs of vertices in Ga,b,c, each pair consisting of one white and one
black vertex, and T, T′ are the corresponding pairs of unit triangles in Ha,b,c, then either det(AG\V) =
−det(PH\T) and det(AG\V′) = −det(PH\T′), or det(AG\V) = det(PH\T) and det(AG\V′) = det(PH\T′).

http://www.mat.univie.ac.at/~kratt/rate/rate.html
http://www.mat.univie.ac.at/~kratt/rate/rate.html
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Corollary 1. Suppose Ga,b,c is the hexagonal sub-region of H with all edge weights set to 1. If
AG is the bi-adjacency matrix of Ga,b,c then

A−1
G = (±1) · ((−1)(i+j)P(a, b, c, lj, ri))1≤i,j≤ab+bc+ca.

The proof of Theorem 1 follows from combining the above corollary with equa-
tions (2.4) and (2.5) in Section 2.2.

5 Not quite happily ever after

Theorem 1 is a very general result that allows us to compute the number of tilings of
a hexagon containing a set of holes of any size and shape, located anywhere within its
interior, so long as each hole has an even charge and the sum of the charges of the holes
is 0. Moreover it affords us a new perspective from which we may consider the "effect"
that such a set of holes has on tilings of the entire plane.

Suppose T is a set of holes contained within Han,bn,cn of fixed size, with their positions
fixed with respect to the centre of Han,bn,cn. The correlation function (or interaction) of the
holes is given by

ω(T) := lim
n→∞

M(Han,bn,cn \ T)
M(Han,bn,cn)

,

thus as n → ∞ this function describes the interaction between the holes within a sea of
unit rhombi.

Conjecture (Ciucu ’08). Let T be any set of holes of fixed size and position in the plane, where
the distance between holes is proportional to k. Then ω(T)/I(T)→ 1 as k→ ∞, where

I(T) := ∏
t∈T

Ct ∏
1≤i<j≤|T|

d(ti, tj)
1
2 q(ti)q(tj),

in which Ct is some constant dependent on each hole t ∈ T, d(ti, tj) is the Euclidean distance
between the holes ti and tj, and q(ti) is the charge of the hole ti.

As far as the author is aware this conjecture remains wide open. There exists a fairly
general proof for tilings around holes that have been embedded on the torus [2], and
similarly a number of proofs already exist for specific types of holes in the plane (see [8]).
However if the asymptotic behaviour of the determinant expression in Theorem 1 could
be successfully shown to agree with the function I(T) above then we would have a proof
of Ciucu’s conjecture for an incredibly general class of holes. This is apparently far easier
said than done– the asymptotics of the triple sum in P(an, bn, cn, l, r) appear to be very
tricky indeed to pin down.
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